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Abstract—A key feature of Software Defined Network is the
decoupling of control pane and data plane. Although delivering
huge benefits, such a decoupling also brings a new risk: the data
plane states (i.e., flow tables) may deviate from the control plane
policies. Existing data plane testing tools like Monocle check the
correctness of flow tables by injecting probes. However, they are
limited in four aspects: (1) slow in generating probes due to
solving SAT problems, (2) may raise false negatives when there
are multiple missing rules, (3) do not support incremental probe
update to work in dynamic networks, and (4) cannot test cascaded
flow tables used by OpenFlow switches.

To overcome these limitations, we present RuleChecker, a fast
and complete data plane testing tool. In contrast to previous
tools that generate each probe by solving an SAT problem,
RuleChecker takes the flow table as whole and generates all
probes through an iteration of simple set operations. By lever-
aging Binary Decision Diagram (BDD) to encode sets, we make
RuleChecker extremely fast: around 5× faster than Monocle
(when detecting rule missing faults), and nearly 20× faster than
RuleScope (when detecting both rule missing and priority faults),
and can update probes in less than 2 ms for 90% of cases, based
on the Stanford backbone rule set.

Index Terms—Software Defined Network, Data plane faults,
Probe generation, Binary Decision Diagram

I. INTRODUCTION

Software Defined Networking (SDN) decouples control
functions away from the data plane, thereby offering a cen-
tralized, flexible, and programmable network control. Such a
decoupling means that the control plane, i.e., controller, should
be physically separated from data plane devices, i.e., switches.
Thus, a new risk rises: the data plane states may not agree with
the control plane policies. For example, switches may fail to
correctly install the rules issued by the controller [1]–[3], due
to software bugs [4], [5], hardware faults [6], or attacks [7]–
[9]. However, currently SDN provides no effective means to
guarantee that the data plane states always correspond to the
control plane policies.

Several tools have been proposed to either monitor or test
the correspondence of the data plane. Data plane monitoring
tools like VeriDP [10], [11] and REV [12] let switches
tag packets with input/output ports, so as to check whether
packets have been forwarded according to the rules. Both
VeriDP and REV cannot handle packet rewrites, and need to
modify SDN switches to add tags. Data plane testing tools
like Monocle [13] and RuleScope [14] detect rule missing
fault and priority fault by generating probes for rules, and
checking whether the switch outputs the probes according to
their corresponding rules. Compared with VeriDP and REV,

Monocle and RuleScope need to send a small number of probe
packets, require no switch modification and are thus a more
preferable approach to check the correspondence of network
data plane. However, we find both Monocle and RuleScope
are fundamentally limited in the following four aspects.

(1) They are relatively slow in generating probes due to
the need of solving Boolean Satisfiability (SAT) problems. For
example, Monocle needs more than 42 seconds to generate
probes for a production flow table of 10,958 rules, while
RuleScope needs around 345 seconds to generate probes for
a synthetic flow table of 320 rules.

(2) They may generate false negatives when there are
multiple missing rules that are correlated. The reason is that
they assume that when a rule r is missing, the probe for r will
match another rule r′ whose priority is lower than r, which
will forward the probe to a different port. A false negative
may raise if r′ is also missing.

(3) They do not support incremental probe update, and
are thus inefficient under dynamic network re-configurations.
Specifically, when a rule is added or deleted, both Monocle
and RuleScope need to recompute all affected probes, each
of which corresponding to an SAT problem. Under frequent
network re-configurations, they may fail to keep pace with
changes at the control plane.

(4) They cannot test cascaded flow tables, a mandatory
feature of OpenFlow. As the de facto standard for SDN,
OpenFlow uses pipelined packet processing, which consists of
multiple flow tables cascaded together. Cascaded flow tables
make packet processing more flexible, and can greatly reduce
rule numbers. However, neither Monocle nor RuleScope can
be easily extended to test cascaded flow tables.

To address the above limitations, this paper presents
RuleChecker, a fast and complete tool to test network data
plane. Architecturally, RuleChecker is a transparent proxy
sitting in-between the controller and switches. It monitors
(without blocking) the rule install/remove messages, and com-
putes/updates probes based on the rules. At the same time,
it injects probes into the data plane and verifies the collected
probes. RuleChecker has four key ingredients that respectively
address the four limitations listed above.

(1) RuleChecker uses a new probe generation method,
which does not require solving SAT problems. In this method,
RuleChecker treats matching fields of rules as sets, and gener-
ates all the probes through an iteration of simple set operations.
Since set operations can be efficiently performed using Binary
Decision Diagrams (BDDs), RuleChecker can generate probes
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TABLE I
Comparison of RuleChecker and the other two flow table testing tools, i.e.,

Monocle and RuleScope.

Features Monocle RuleScope RuleChecker

Rule missing fault
√ √ √

Rule priority fault ×
√ √

No false negatives × ×
√

Incremental update × ×
√

Cascaded flow tables × ×
√

much faster than Monocle and RuleScope.
(2) RuleChecker introduces a new rule dependency model,

and uses multiple rounds of probing to eliminate false neg-
atives. Specifically, when a rule is tested to be incorrect,
RuleChecker repairs it and re-probes it. Thus, RuleChecker
can ensure that when testing a specific rule, all other rules
that it depends on have already been tested or repaired to be
correct.

(3) RuleChecker only needs to re-compute a minimal num-
ber of probes when a new rule is added. Thus, RuleChecker
can fast update probes to keep pace with frequent network
re-configurations.

(4) RuleChecker generates a probe for each rule of each
of cascaded flow table, based on a model named rule path.
Thus RuleChecker can test rule missing faults in cascaded flow
tables, and potentially localize the missing rules.

Table I gives a comparison of RuleChecker and the other
two related tools. In sum, our contribution is three-fold:
• We propose RuleChecker, a new data plane testing tool

which can generate probes much faster than previous
approaches.

• We design a series of algorithms to make RuleChecker
sound and complete, in the sense that it has no false nega-
tives, supports incremental update, and can test cascaded
flow tables.

• We prototype RuleChecker as a proxy between the con-
troller and switches, and test it using both real and
synthetic rule sets.

The rest of this paper proceeds as follows. Section II
states problem, i.e., rule faults at SDN data plane; Section III
presents the baseline version of RuleChecker which is fast but
has basic features, and Section IV extends it to a complete ver-
sion; Section V gives the implementation of RuleChecker, and
evaluates its function and performance; Section VI discusses
related work, and Section VII concludes.

II. PROBLEM STATEMENT

This section first gives a short preliminary to SDN, and then
introduces the rule faults at SDN data plane.

A. Preliminary to SDN

We consider a typical Software Defined Network (SDN)
where one controller controls a set of switches, through
a standard configuration protocol like OpenFlow [15]. An
operator specifies her policy, like “host A should reach host B,
passing firewall C”, in a high-level language like Pyretic [16].
The controller then complies the policies into a set of rules,

and installs these rules to flow tables of the corresponding
switches. The switches are expected to forward packets ac-
cording to the rules in their flow tables.

We assume a rule takes a match-action form as in OpenFlow.
Specifically, a rule r is a 3-tuple 〈p,m, a〉, where r.p defines
the priority of r (larger number means higher priority), r.m
is the matching fields of r, and r.a is the action of r 1. Here,
the matching fields include the port from which a packet is
received, and header fields like TCP five-tuple. All these fields
can have wildcard bits “∗”. The actions include outputting the
packet to a port, dropping the packet, or rewriting some header
fields.

We assume each switch has one or multiple flow tables,
which are numbered sequentially. A packet will first be
matched against rules in the first flow table, and then other
tables, depending on the actions of the matched rule. Within a
single flow table, a packet is matched against rules according
to their priorities. When a packet is matched by one rule, the
action of the rule is executed, and the packet can be directed
to other flow tables for further matching.

B. Rule Faults at SDN Data Plane

In this paper, we consider two typical rule faults at the SDN
data plane, i.e., rule missing fault, and rule priority fault.

Rule missing fault. We say a rule r is experiencing a missing
fault, if all packets whose headers are within the r’s matching
fields r.m will not match r. Rule missing can take two forms:
(1) the controller sends a rule installation message to the
switch, but the switch fails to install the rules to its flow
table, or (2) the rule that previously exists in a switch’s flow
table disappears without being noticed by the controller. In the
following, we show possible reasons for the above two forms
of rule missing.

A possible reason for (1) is that the switch software may
contain bugs such that it fails to properly process the rule
installation messages. Indeed, an OpenFlow controller can use
Barrier messages to let switches acknowledge the flow
installations. However, recent studies [1], [2] showed that some
production SDN switches respond to Barrier messages even
before the rules are actually installed. This means Barrier
messages can be a bad indicator for the completion of rule
installation.

As for (2), it is possible that a switch deletes a rule from
its flow table due to table overflow, without reporting to the
controller. Also, an attacker can compromise a switch, and
tamper with the flow rules [7]–[9]. For example, a recent study
showed that ONIE [17], the boot loader for many 3rd party
switch OSes, is vulnerable to attacks, and by compromising
ONIE, an attacker can gain persistent control over SDN
switches [9].

Note that link failures can be regarded as a special case of
rule missing fault. When a link fails, all rules that forward the
packet to the corresponding port can be thought to be missing.

1Each rule may also be associated with a set of counters, while we do not
include them in our model as they do not affect our method.
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Fig. 1. An example of probe generation. (a) shows the rules to be tested;
and (b) shows the probes generated that can detect missing rules; (c) shows
a case of rule priority swap; (d) shows the probes generated that can detect
rule priority swaps.

Rule priority fault. We say a pair of rule ri and rj are
experiencing a priority fault, if their priorities are swapped.
Priority faults can happen if the switch totally ignores the
priority fields of rules. For example, it is reported that the
HP ProCurve switch lacks support for rule priority [2]. In
addition, priority fault can also happen due to software bugs.
For example, it is reported that the Pronto-Pica8 3290 switch
running PicOS 2.1.3 caches rules without respecting rule
priorities [5]. Specifically, when the number of rules exceeds
the size of hardware flow table, the PicOS will place all the
following rules in the software flow table. Thus, it may happen
that rules with higher priorities are placed in the software flow
table, and packets can falsely match some lower-priority rules
in the hardware flow table.
Assumption. Apart from the above two faults, there are some
other faults, including matching field fault (e.g., some bits of
a rule’s matching fields are flipped), and action fault (e.g.,
the output port changes from port 1 to port 2). In this paper,
we do not consider these faults. However, our probe-based
method can potentially detect these faults without guarantee.
In addition, we assume the rules to be tested should be active,
meaning that there should be some packets that can match the
rule.

III. RULECHECKER: THE BASELINE CONSTRUCTION

This section presents the baseline construction of
RuleChecker, which can detect both rule missing and
priority faults. We will first present an overview, and give
details on the three steps of this method.

A. Overview

Detecting rule missing fault. According Monocle, a probe
that can detect the missing fault of ri should satisfy:

1) The probe should match rule ri, but no any other rule
whose priority is higher than ri.

2) Let rj be the highest-priority rule satisfying rj .p < ri.p
and the probe matches rj , then we should have ri.a 6=
rj .a.

The first condition ensures that the probe will take action ri.a,
if ri is not missing, and the second condition ensures that the
probe will take a different action rj .a, if ri is missing. Thus,
we can detect whether ri is missing by observing the action
on the probe (e.g., which port the probe is output to).

Take Figure 1(a) for example, which consists of four rules,
the probe generation results are shown in Figure 1(b). The
shaded areas represent the probe sets, and the dots represent
the sampled probes. To see why the probes work, consider
R2 is missing. Then, R2’s probe will match R4, which will
forward the probe to port 1, disagreeing with R2’s action
(forward to port 2), and thus can be detected.

Different from Monocle and RuleScope, which generate
probes by solving Boolean Satisfiability (SAT) problems,
which are NP, we formulate the problem as an iteration of
simple set operations:

ri.h← ri.m ∩ ∪rj .p>ri.prj .m

ri.t← {override(ri, rj)|rj .a 6= ri.a, rj .p < ri.p} (1)

override(ri, rj) , ri.h ∩ ∪rj .p<rk.p<ri.prk.m ∩ rj .m

Here, ri.h is a subset of ri.m, which is termed as the hitting
fields of ri. As its name implies, ri.h is the set of packet
headers that can be actually “hit” rule ri. while ri.m − ri.h
are packet headers that will “hit” other rules with higher
priorities. override(ri, rj) encodes the set of packet headers,
for which ri and rj are the highest-priority and the second
highest-priority rules matching them, respectively. That is, ri
“overrides” rj at headers override(ri, rj), and if ri is missing,
these headers will match rj instead. Each set p ∈ ri.t is termed
as a probe set of rule ri. To generate a probe for rule ri, we
can sample a probe from any of its probe sets in ri.t.

One key feature of the above probe generation process is
that the intermediate results when generating probes can be
re-used for later probe generation. Thus, all probe sets can be
generated with a single sweep of the flow table. This feature
will manifest itself in Algorithm 1.
Detecting rule priority fault. The probes generated for
detecting rule missing faults may not detect priority faults. Let
us return to the previous example, and consider the priorities of
R1 and R2 are swapped, as shown in Figure 1(c). We can see
that all the four probes will pass the test, however, packets
with headers belonging to the gridded part will be wrongly
forwarded to port 2, instead of port 1. To detect such a fault,
we also need to generate a probe for override(R1, R2).

Generally, to detect rule priority faults, for each rule ri, we
need to sample a probe from each of its probe sets in ri.t.
In addition, the definition of override in Eqs. (1) should be
changed to:

override(ri, rj) , ri.h ∩ rj .m (2)

That is, the new definition only requires the hitting field
of ri and the matching field of rj overlap, thereby relax-
ing the previous definition in Eqs. (1). Thus, to detection
priority faults, RuleChecker needs to generate more probes.
The following theorem states that with this new definition of
override(ri, rj), RuleChecker can detect priority faults.
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Fig. 2. Comparison of wildcard and Binary Decision Diagram (BDD) on
performing set complement. In the BDD, the dashed and solid line means
“0” and “1”, respectively.

Theorem 1. Suppose the priorities of two rules ri and rj are
swapped, and there exists some packet experiencing a fault,
i.e., falsely matching a rule whose action is different from the
correct one, then RuleChecker can detect this fault.

Proof: Please refer to our technical report [18].

B. Step 1: Encoding Header Fields

Before generating probes using Eqs. (1), we need a method
to encode header fields, i.e., ri.m, ri.h, override(ri, rj). Here,
we consider the following two options.
Wildcard is a good choice for representing IP prefix or suffix,
and is adopted by HSA [19]. However, it is not efficient for set
operations, especially set subtractions. For example, a simple
subtraction 10.0. ∗ . ∗ \10.0.0.1 will produce 16 wildcards.
Due to this reason, HSA is relatively slow in computing
packet headers that are reachable between two switches. For
RuleChecker, generating probes involves intersections (A∩B)
and subtractions (A ∩ B̄), according to Eqs. (1). Thus, the
number of wildcards will grow exponentially when generating
probes.
Binary Decision Diagram (BDD [20]) is an efficient data
structure for encoding Boolean expressions. Any Boolean
expression can be canonically and concisely encoded with
a Reduced Ordered BDD (ROBDD), a variant of BDD (we
will refer to ROBDD simply as BDD in the rest of paper). A
key advantage of BDD over wildcard is its efficient support
for logical operations. Therefore, BDD has been used by
many previous works to encode OpenFlow rules [21]–[23].
Especially, Yang and Lam [23] show that when the matching
fields of a rule are expressed in prefix, suffix, and intervals,
the number of nodes in the BDD encoding the rule is 2 + 2h,
where h is the number of bits in the matching fields.

Figure 2 gives an example for comparison of BDD and wild-
card. We can see that using BDD, computing the complement
of a set only needs flipping the two leaf nodes, while using
wildcards, three wildcards will be generated. Based on the
above discussion, we decide to use BDD instead of wildcard
for encoding header fields.

C. Step 2: Generating Probe Sets

Algorithm 1 summarizes the probe generation process. Note
here the set operations in Eqs. (1) naturally transform to

Algorithm 1: GenerateProbe(R)
Input: R = {ri, 1 ≤ i ≤ n}: the flow table be tested. For each

ri, ri.m and ri.a are the match and action field,
respectively.

Output: ri.t, ∀ri ∈ R: the collection of probe sets for ri (ri.t
is initialized to ∅).

1 sort the rule set R in decreasing priority order;
2 Ha ← true;// headers not matched yet
3 foreach 1 ≤ i ≤ n do
4 ri.h← ri.m ∧Ha; Ha ← Ha − ri.m; // matching ri
5 if ri.h 6= false then
6 Hb ← ri.h;// headers not overrided yet
7 foreach i < j ≤ n do
8 override(ri, rj)← Hb ∧ rj .m;
9 if override(ri, rj) 6= false then

10 if ri.a 6= rj .a then
11 ri.t← ri.t ∪ {override(ri, rj)};
12 Hb ← Hb − override(ri, rj);

// matching the default rule
13 if Hb 6= false then
14 ri.t← ri.t ∪ {Hb};

logical operations, after we encode header fields with BDDs.
The algorithm first sorts the rules in the order of decreasing
priority (Line 1), and initializes the set of unmatched headers,
denoted as Ha, as the whole set, e.g., the logical “true”
(Line 2). Line 3-14 generates probe sets for each rule ri.
In each loop, the algorithm first calculates the hitting fields
ri.h and updates Ha (Line 4). If ri.h is not empty, then the
algorithm initializes Hb as ri.h, and calculates the overriding
fields override(ri, rj) for each rj that has a lower priority
than ri (Line 5-8). If override(ri, rj) is not empty and the
actions of ri and rj are different, then it will be put as a
probe set into ri.t, and override(ri, rj) is subtracted from
Hb (Line 9-12). Note here when considering priority fault,
override(ri, rj) should not be subtracted. Finally, if there are
still remaining headers in Hb (meaning that Hb will match the
default rule), then Hb will be added to ri.t (Line 13-14).

D. Step 3: Sampling Probes

For each rule ri, we iterate over all its probe sets in ri.t,
and for each probe set p, we randomly sample one probe from
p. Since the probe set is represented by BDD, then we only
need to find a truth assignment for the BDD, which we refer
to as the AnySAT problem.

AnySAT problem is very efficient for BDD: one only needs
to find a path from the root node leading to the True node.
The running time is O(n), where n is the number of variables
encoded by the BDD. If the BDD encodes a set of IPv4
addresses, then the number of variables is 32. That is, AnySAT
has a linear complexity, compared with Boolean Satisfiability
(SAT), which is NP-complete. This makes our RuleChecker
much faster than Monocle [13] and RuleScope [14], which
are both based on solving SAT.
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Fig. 3. An example of multiple missing rules (a)(c), and the corresponding
dependency graphs (b)(d). The rules with dotted lines are missing, and the
×/X symbol means the probe passes/fails, respectively.

IV. RULECHECKER: THE COMPLETE CONSTRUCTION

In the baseline construction, we showed how RuleChecker
can generate probes that can detect rule missing and priority
faults. However, like Monocle and RuleScope, the baseline
RuleChecker still misses some important parts: (1) it may raise
false negatives when there are multiple missing rules; (2) it
cannot incrementally update probes when a new rule is added;
(3) it does not support cascaded flow tables. This section
presents a complete construction of RuleChecker, which fill
the above missing parts.

A. Eliminating False negatives

The baseline RuleChecker, as well as Monocle and Rule-
Scope, may generate false negatives when there are multiple
missing rules. To see why, let us return to the example in
Figure 3(a), where R3 and R4 are missing simultaneously.
In this case, R4’s probe p2 will match the default drop rule
and fail the test. However, R3’s probe p1 will also match
the default drop rule and pass the test, resulting in a false
negative. A similar case is that when R1 and R3 are missing
simultaneously, as shown in Figure 3(c). In this case, R1’s
probe p3 will result in a false negative.

The reason for such false negatives is that when generating
a probe for ri, we assume that the existence of the lower-
priority rule rj that ri overrides, such that when ri is missing,
the probe will hit rj instead. That is, the validity of ri’s probe
depends on the existence of rj , and when rj is missing, the
testing result of ri is not valid.

Rule correctness criterion. To eliminate false negatives when
multiple rules are missing, we should use a new criterion for
rule correctness. Before that, we first define rule dependency
as follows.

Definition 1. A rule ri is said to depend on another rule rj , if
∃x ∈ ri.t such that rj is the highest-priority rule that intersects
with x. Formally, ri depends on rj if and only if:
• rj .p < ri.p, and
• ∃x ∈ ri.t such that: (i) x ∧ rj .m 6= ∅, and (ii) ∀rk, if

rj .p < rk.p < ri.p, then x ∧ rk.m = ∅.

As shown in Figure 3(b), R1 depends on R3, and R3
depends on R4. There are two points to note here. (1) If
the lower-priority rule rj is untestable (rj .t = ∅), we will
not create the dependency relationship between ri and rj .
(2) Dependency relationship is not transitive. As shown in
Figure 3(b), we have R1 depends on R3, R3 depends on
R4, but R1 does not depend on R4. Based on dependency
relationship, we define the rule correctness criterion as follows.

Definition 2. A rule ri is said to be correct if the probe for ri
passes the test, and either (1) ri depends on no other rules, or
(2) there exists a rule rj that ri depends on, and rj has been
tested to be correct.

To illustrate the above correctness criterion, let us return
to Figure 3 (b), where the probe for R4 fails the test. Even
probes for R2 and R3 pass the test, we should not mark them
as correct. Similarly, since R1 depends on R2 and R3, both
of which are not marked correct, we should not mark R1 as
correct, either.

Dependency-aware rule probing and repairing. To elim-
inate false negatives due to multiple missing rules, we use
multiple rounds of rule probing, and when some probes fail,
we repair their corresponding rules, so as to meet the above
new criterion. There are two options here, i.e., the conservative
approach and the aggressive approach:

(1) The conservative approach always sends probes for rules
that depend on no other rules. If these probes pass the test,
then we remove the rules, together with their corresponding
edges, from the dependency graph. Then, we continue to send
probes for rules that depend on other rules. Otherwise, if some
probes fail, we repair those rules (by re-installing them) and
re-send the failed probes until all probes pass the test. Take
Figure 3 (a) for example. In the 1st round, only the probe
for R4 is sent, which fails, and R4 is re-installed. In the 2nd
round, the probe for R4 is sent again and passes. In the 3rd
round, the probes for R2 and R3 are sent, of which the probe
for R3 fails, and R3 is re-installed. In the 4th round, the probe
for R3 is sent again, which passes. In the 5th round, the probe
for R1 is sent, which passes. Thus, it takes 5 rounds and 6
probes in total.

(2) The aggressive approach simply sends all probes without
waiting, and see if there are failed probes. Since there are no
false positives, we only need to repair the rules whose probes
fail, and re-send all probes again. This process continues until
there are no failed probes. Let us return to the case in Figure 3
(a). In the 1st round, the probe for R4 fails, and R4 is re-
installed. In the 2nd round, the probe for R3 fails, and R3 is
re-installed. In the 3rd round, there are no failed probes, and
the testing finishes. Thus, it takes 3 rounds and 12 probes in
total.

From above, we can see that the conservative approach takes
more rounds, but injects less probes. In contrast, the aggressive
approach needs less rounds, but injects more probes. In our
experiment, we find 3 rounds are mostly sufficient for the
aggressive approach to test a flow table with multiple missing
rules (see Section V-C).



Algorithm 2: UpdateProbes(r)
Input: r: the newly added rule; R: the set of all rules.

1 Rh ← {ri ∈ R | ri.m ∧ r.m 6= false, ri.p > r.p};
2 Rl ← {ri ∈ R | ri.m ∧ r.m 6= false, ri.p < r.p};
3 sort Rh and Rl in decreasing priority order;
4 foreach ri ∈ Rh do
5 if ri.probe 6= false and ri.override.p < r.p then
6 if ri.probe ∧ r.m 6= false then
7 ri.probe← ri.probe− r.m;
8 if ri.probe = false then
9 generate a probe for ri;

10 else if ri.probe = false and ri.a 6= r.a then
11 generate a probe for ri;

12 foreach ri ∈ Rl do
13 if ri.probe 6= false and ri.h ∧ r.m 6= false then
14 ri.probe← ri.probe− r.m;
15 if ri.probe = false then
16 generate a probe for ri;

17 generate a probe for r;

B. Incremental Probe Update

Algorithm 2 summarizes the process of updating probes
when a new rule is added into the flow table. For simplicity,
we consider there are no rule swaps, and thus there is at most
one probe set for each rule.

First, only rules that have overlapping matching fields with
the newly added rule r may affect the probe generation for r,
and their probes may also be affected by r. Thus, based on r,
we class rules in the flow table into two groups:
• Rh: the rules whose matching fields overlap with r, and

whose priority is higher than r.
• Rl: the rules whose matching fields overlap with r, and

whose priority is lower than r.
For each rule ri ∈ Rh, if it has a probe set ri.probe, then

ri.probe will be affected only if the rule that ri overrides
(denoted by ri.override) has lower priority than r (Line 5).
In this case, the overlapping fields of rj and r are subtracted
from the probe of ri (Line 6-7). If the probe for ri becomes
empty, we re-generate probe for ri (Line 8-9). If ri does not
have probe set yet, and r has different action as ri, then we
try to generate probe for ri (Line 10-11).

For each rule rj ∈ Rl, if rj does not have probe set, it will
not have probe set after r is added. In addition, even rj has
probe set, it will not be affected if the hitting fields does not
overlap with the matching fields of r. Apart from the above
two cases, the probe for ri will be updated by subtracting
the overlapping fields of the probe and r (Line 13-14). If
the collection of probe sets becomes empty, then we try to
generate a probe set for ri (Line 15-16). Finally, we generate
the probe set for r itself (Line 17).

C. Testing Cascaded Flow Tables

We use Figure 4 as an example to illustrate our method to
test cascaded flow tables. In this example, there are two flow

r1,1 r1,2 r1,d

r2,1 r2,2 r2,d

r1 r3 r4 r5r2

r6

Table 1

Table 2

Fig. 4. An example of cascaded flow tables. The shaded are the default rules.

tables: Table 1 and Table 2. We assume that packets will match
Table 1 and Table 2 in sequence. Each flow table has three
rules, numbered in the order of decreasing priority, and at the
last is a default rule that catches all unmatched headers.

First, define rule path as an ordered list of rules which can
be matched by at least one packet header in sequence. In this
example, there are 6 rule paths, e.g., r1,1 → r2,1, r1,1 → r2,2,
etc. For each rule path, we attach the last rule of the path with
an extra rule, termed leaf rule, to represent it. In the following,
we will use leaf rules to refer to their corresponding rule paths.
As shown in Figure 4, r̄1 through r̄6 are the leaf rules.

Here, leaf rules and rule paths can be constructed using an
approach similar to FlowAdapter [24]. If the actions of rules
do not contain “set-field” operations, the matching field of a
leaf node r̄i is simply an intersection of matching fields of
rules along its rule path. In this example, the matching field
for r̄1 is r̄1.m = r1,1.m∧ r2,1.m. On the other hand, if a rule
ri,j sets a field x, then we will not intersect the field x with of
all the following rules. For example, if r2,1 sets src ip, then
r̄1.m = r1,1.m ∧ r

′

2,1.m, where r
′

2,1.m is r2,1.m with src ip
set to wildcard.

For each rule ri,j , let Leaf(ri,j) denote the set of leaf
rules, whose rule paths traverse ri,j . Suppose r̄k ∈ Leaf(ri,j),
define Parent(ri,j , r̄k) as the parent of a rule ri,j along the
rule path r̄k, which is the rule matched right before ri,j is
matched along path r̄k. For simplicity of notations, we create
a virtual rule r0,0 as the parent of all rules that are the first
rules of some paths. In this example, Parent(r1,1, r̄1) = r0,0;
Parent(r2,1, r̄1) = r1,1 and Parent(r2,1, r̄3) = r1,2. Define
Relative(ri,j , r̄k) as the set of leaf rules of Parent(ri,j , r̄k)
but not leaf rules of ri,j , i.e.,:

Relative(ri,j , r̄k) , Leaf(Parent(ri,j , r̄k))\Leaf(ri,j)

The intuitive meaning of Relative(ri,j , r̄k) is: when ri,j
is missing, then the headers originally traversing path r̄k
will then possibly traverse paths in Relative(ri,j , r̄k). For
example, Relative(r1,1, r̄1) = {r̄3, r̄5, r̄6}, meaning that r1,1
is missing, the headers that originally match r̄1 can possibly
match r̄3, r̄5, or r̄6. For r̄2 and r̄4, the headers that originally
match r̄1 cannot match them either, since their rule paths
contain r1,1.

Algorithm 3 summarizes the process of probe generation.
The algorithm first generates the set of leaf rules R̄ (Line 1-3),
and calculates their matching fields and hitting fields (Line 4-
7). Note that in the intersection performed at Line 6, ri,j .m
should wildcard those fields that have been set by a previous
rule on the rule path. Then, the algorithm generates a probe



Algorithm 3: GenerateProbeCascade(R1, . . . , Rm)
Input: Ri = {ri,j , 1 ≤ j ≤ ni}: the ith flow table. For each

ri,j , ri,j .m and ri,j .a are the match and action field,
respectively.

Output: ri,j .t, ∀ri,j : the collection of probe sets for ri,j
(ri,j .t is initialized to ∅).

1 construct all rule paths from cascaded flow tables R1, . . . , Rm;
2 extract the set R̄ of leaf nodes from the N-tree, with |R̄| = N ;
3 sort R̄ in decreasing priority order;
4 Ha ← true;// headers not matched
5 foreach 1 ≤ k ≤ N do
6 r̄k.m←

∧
ri,j∈Path(r̄k) ri,j .m; // get r̄k.m

7 r̄k.h← r̄k.m ∧Ha; Ha ← Ha − r̄k.m; // get r̄k.h

8 foreach ri,j ∈ Ri, 1 ≤ i ≤ m do
9 foreach r̄k ∈ Leaf(ri,j) do

10 if r̄k.h 6= false then
11 Hb ← r̄k.h;// headers not overrided
12 foreach k < l ≤ N , r̄l ∈ Relative(ri,j , r̄k) do
13 override(r̄k, r̄l)← Hb ∧ r̄l.m;
14 if override(r̄k, r̄l) 6= false then
15 if r̄k.a 6= r̄l.a then
16 ri,j .t← ri,j .t ∪ {override(r̄k, r̄l)};
17 Hb ← Hb − override(r̄k, r̄l);

18 if Hb 6= false then
19 ri,j .t← ri,j .t ∪ {Hb};

set for each rule of each flow table (Line 8). For each rule
ri,j , the algorithm selects one of its leaf rules r̄k (Line 9),
and tries to find another rule r̄l satisfying r̄k overrides r̄l and
r̄k.a 6= r̄l.a (Line 10-19). The process of finding such r̄l is
mostly the same with that of Algorithm 1 (Line 5-14). The
difference is that r̄l is chosen from Relative(ri,j , r̄k), rather
than all rules that have priorities lower than r̄k, for reasons
that have been explained above.

Limitations. Currently, RuleChecker doesn’t support
some OpenFlow features, e.g., group tables. In addition,
RuleChecker cannot detect if a backup rule is missing. We
leave them as our future work.

V. IMPLEMENTATION AND EVALUATION

In this section, we first present the implementation of
RuleChecker, and test its functions, i.e., whether it can detect
missing faults, priority faults, eliminate false negatives, and
test cascaded flow tables. Then, we micro-benchmark the
efficiency of our probe generation and update algorithms,
respectively, and compare the results with Monocle and Rule-
Scope.

A. Implementation

Our implementation of RuleChecker consists of around 7K
lines of Java codes. First, we build a proxy between the con-
troller and switches based on Netty, an asynchronous network
I/O library [25]. Inside the proxy, we use the packet parsing
library of Floodlight [26] to parse the OpenFlow packets.
Then, we augment the proxy with the RuleChecker modules,

including probe generation/update, probe injection/collection,
and rule repairing. For BDD related operations, we use JDD,
a Java BDD library [27].

For probe injection, let S be the switch under test, we let
the controller send a PacketOut message encapsulating the
probe to a switch Su that is adjacent S. The choice of Su is
arbitrary, unless the probe specifies it should be injected to a
specific port of S. For probe collection, we let the controller
install two rules at Table 0 of each switch adjacent to S: the
first is a high-priority rule that catches all probes, by matching
an unused field reserved for RuleChecker, with an action of
sending a PacketIn message to the controller; the second is
a low-priority rule that forwards the rest of packets to Table
1 for further matching. Since we use Table 0 to catch probes,
original rules will be placed in Table 1, instead.

B. Experiment Setup

In all experiments below, we use the topology shown in
Figure 5. The controller (Floodlight [26]) and RuleChecker
run on a server with a 3.1GHz dual-core Intel i5 CPU and
16GB memory. We emulate a set of software switches (Open
vSwitches [28]) using Mininet [29] on another server, which
has two 2.0GHz 6-core Intel E5 CPUs and 32GB memory. The
switches form a star topology, where the switch to be mon-
itored has n ports, each connected to a switch. RuleChecker
acts as a proxy between the controller and switches. We let the
controller install flow rules into the switch’s flow table, and
use RuleChecker to monitor faults in the switch’ flow table.

We use both real and synthetic rules for experiments.
• Real rules. We generate the real rules by parsing the

configuration files of yoza, one of the 16 Stanford back-
bone routers [19]. There are 2755 OpenFlow rules with
priorities, and the matching fields include input port, TCP
five-tuple, and VLAN-ID. This data set was first parsed
and used by Monocle.

• Synthetic rules. We generate the synthetic rules using
ClassBench [30], a public-available packet filter genera-
tor. For fair comparison, the parameters used to generate
the rules are kept the same with those in RuleScope.

C. Functional Test

Detecting rule missing faults. We let the controller install
1000 rules into the flow table of a switch. The rules are chosen
from the 2755 Stanford rules. Then, we randomly delete one
rule from the switch’s flow table, and measure the time for
RuleChecker to detect the fault. Specifically, RuleChecker
sends probes in sequence at a speed of 500 probes per second,
and if a probe fails to return within a specific period of 0.5
seconds, RuleChecker will re-send the probe again. Each probe
will be sent at most three times.

The time it takes RuleChecker to detect a single missing
rule is shown as the solid blue line in Figure 6. The detection
time is less than 2 seconds for most of the cases. Since we
send probes from the first one in sequence, the detection time
depends on where the missing rule is, and thus the line is
basically linear.
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Fig. 5. The network topology used
for experiments.
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We continue to show how RuleChecker works when mul-
tiple rules are missing. We randomly delete N rules from
the switch’s flow table, and measure the time that it takes
RuleChecker to detect a threshold number of M missing rules.
As shown in Figure 6, it takes less time for RuleChecker
when there are more missing rules, and when the threshold
is lower. The shapes of the lines are agreeing with the results
in Monocle.

Testing cascaded flow tables. For cascaded flow tables, we
use the configuration files of yoza, a router from the Stanford
network. The configuration files consists of ACL rules that
filter input packets, IP forwarding rules, and ACL rules that
filter output packets. These three types of rules are natural fit
for three cascaded flow tables. Thus, instead of parsing the
configuration files into the 2755 rules, we populate them into
three flow tables, In-ACL, FWD, and Out-ACL, which consists
of 8, 247, and 142 rules, respectively.

RuleChecker is able to generate probes for 306 out of the
397 rules. For each such rule, we delete it and send all the
probes, and check whether these probes pass the test. Figure 7
reports the test results, where the green dots represent probes
that pass the test, while red grids represent probes that fail the
test. We can see that for each rule, if it is deleted, its probe
will definitely fail the test. However, it is also possible that
other probes also fail. This brings problems for us to pinpoint
which rules are missing. We leave the localization of missing
rules in cascaded flow tables as future work.

Detecting rule priority faults. We continue to test whether
RuleChecker can detect priority faults. To simulate priority
faults, we select a subset of Stanford rules, randomly select
two rules from it, and swap their priority values. Then,
we check whether the flow table remains equivalent after
the swap. By equivalent, we mean that packet forwarding
behaviors remain unchanged. Then, if the flow table becomes
inequivalent, we use RuleChecker to check the flow table. We

TABLE II
The probe generation time and number of generated probes for Monocle,

RuleScope, and RuleChecker. The flow table consists of 2755 rules that are
parsed from the Stanford yoza router configurations. RuleChecker∗ stands

for RuleChecker without considering priority faults.

RuleScope Monocle RuleChecker∗ RuleChecker

time 15.58 sec 3.61 sec 0.56 sec 0.79 sec
#probes 9234 2442 2442 2742

report the number of failed probes in Figure 8. We can see
that RuleChecker can always find more than one failed probe
after priority faults.

Detecting correlated missing rules. As shown in Sec-
tion IV-A, Monocle and RuleScope may generate false neg-
atives when there are multiple missing rules that depend on
one another. In the experiment, we simulate the cases where
multiple rules that depend on one another are missing, and
show how RuleChecker can detect all the missing rules using
the aggressive approach presented in Section IV-A. We choose
8 highly correlated rules from the Stanford rule set, and
delete N rules of them. We measure the time that it takes
RuleChecker to detect all missing rules (the last round of rule
repairing and probing is not counted). Figure 9 reports the
time to detect all the missing rules for different N . We can
see that the detection time falls into two classes: those in-
between 150 ms and 180 ms, and those in-between 300 ms
and 350 ms. The shorter ones correspond to cases that all
missing rules are detected after sending all the probes once,
thus only one round of rule probing is needed (around 150
ms). The longer ones correspond to cases that after one round
of probing, RuleChecker repairs the missing rules, sends the
probes again, and still detects missing rules. In this case, two
rounds of rule probing and one round of rule repairing (around
50 ms) are needed.

D. Probe Generation Efficiency

First, we micro-benchmark the probe generation speed of
RuleChecker on the Stanford rule set, and compare it with
those of RuleScope and Monocle. For benchmark, we run
RuleScope and RuleChecker on a server with a 3.6GHz Intel i7
CPU. Since we do not have the codes of Monocle, we directly
use the results reported in their paper, where a 2.93GHz
Intel Xeon CPU is used (readers can scale the comparison
results themselves). Table II reports the results, where we can
see that without considering rule priority fault, RuleChecker
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(marked with ∗) is around 5× faster than Monocle after
scaling. Considering priority fault, RuleChecker is nearly 20×
faster than RuleScope.

The number of probes generated by RuleScope is much
larger than RuleChecker and Monocle. The reason is that Rule-
Scope generates a probe for each pair of rules whose matching
fields overlap. In contrast, both RuleChecker and Monocle
generate a probe only when a higher-priority rule “overrides”
a lower-priority rule (see Section III). RuleChecker generates
slightly more probes than Monocle, since RuleChecker can
detect both priority faults and missing faults, while Monocle
only detects missing faults.

We then evaluate the rule generation speed with synthetic
rules generated with ClassBench [30]. The generated flow
table consists of 100 to 1000 rules. Since we do not have
the codes of Monocle, we only evaluate the probe generate
speed of RuleChecker and RuleScope. For a fair comparison
with RuleScope, we intentionally disable the RuleChecker to
check whether two rules have different actions.

As shown in Figure 10(a), RuleScope generates probes for
less than 200 rules in reasonably short time, while for 400
rules, the time quickly increases to 250 seconds. In contrast,
RuleChecker can generate probes for 1000 rules within 1
second. As shown in Figure 10(b), RuleChecker needs less
probes than RuleScope. Specifically, RuleChecker reduces the
number of probes by roughly 35% when the flow table consists
of 400 rules. We stop at 400 rules as RuleScope fails to
generate probes within a reasonable time. This implies that
RuleChecker needs to inject, collect, and verify less probes,
compared with RuleScope.

E. Probe Update Efficiency

We continue to evaluate the efficiency of incremental probe
update. In this experiment, we start from an empty flow

table, and insert one rule each time, and measure the time
RuleChecker takes to update all probes. The rules are sorted
in the order of decreasing priority, and inserted in sequential,
reserve, and random order, respectively. Figure 11 reports the
results for both the Stanford and ClassBench rule sets.

From Figure 11(a), we can see that for the Stanford rules,
RuleChecker uses less than 2ms for more than 90% of all
cases, In addition, using random insertion costs more time
than using sequential and reverse insertion. This indicates
that the order of rule insertion can impact the update time.
From Figure 11(b), we can see that the update time increases
as the flow table size grows. This is because when the rule
dependency will be more complicated for larger flow tables.
Even so, the update time still keeps under 10 ms for more
than 90% of all cases.

VI. RELATED WORK

Recently, many tools have been developed to verify, moni-
tor, or test the correctness of computer networks. We classify
tools that are related to RuleChecker into three classes.
Data plane verification tools verify whether a network data
plane satisfies some key invariants, including reachability,
blackhole-freedom, loop-freedom [19], [23], [31]–[34]. Since
these tools check the flow tables in a centralized manner, i.e.,
at the controller, they may only ensure correctness at the con-
troller side, while cannot guarantee the correctness of the data
plane forwarding behaviors. As shown in previous work [2],
[13], flow tables of switches may deviate from what the control
plane thinks, resulting in packet forwarding behaviors that are
inconsistent with controller-side rule configurations.
Data plane testing tools directly test the network data plane
by sending probe or test packets. ATPG [4] generates the
minimum number of test packets that can trigger all rules
in the network, and verifies whether all these probe packets
can be correctly received by their intended end hosts. Since
ATPG only checks packet receptions, it can only verify the
basic pairwise reachability, while cannot verify properties
like middlebox traversals that require inspections on packet
trajectories. Monocle [13] tests whether a rule is in a switch’s
flow table by sending a probe packet to the switch and
checking which port the packet is output to. A probe packet
should be constructed in such a way that it can only trigger
the rule under test, while not being matching by other rules
in the switch. A similar approach, RuleScope [14], also tests
the flow table integrity by sending probes. The difference is
that it can detect priority faults of rules as well.

As already noted in the Introduction, there are several
limitations for both Monocle and RuleScope. First, the probe
generation process is slow: Monocle costs around 43 seconds
to generate probes for 10K real rules; RuleScope uses more
than 300 seconds to generate probes for 320 synthetic rules.
Second, they implicitly assume there is at most one missing
rule, and thus may generate false positives when there are
multiple (correlated) missing rules. In addition, they do not
support incremental update, and cannot test cascaded flow
tables.



Data plane monitoring tools. Different from data plane test-
ing tools, data plane monitoring tools sample real traffic from
the data plane, and verify whether their forwarding behaviors
are agreeing with the control plane policies. VeriDP [10],
[11] let switches imprint the forwarding behaviors into packet
tags, and report the tags to the controller for verification. The
controller verifies whether the tags carried by packets are the
same with what the controller computes itself according to the
network policies. e.g., middlebox traversal. REV [12] extends
VeriDP to work in adversarial settings, where tags can spoofed
by compromised switches. By using message authentication
codes (MACs), REV can securely verify whether the rules
installed by the controller have been correctly enforced by
switches. The common limitation of VeriDP and REV is that
they need to modify switches to support tag/MAC genera-
tion. In addition, they do not support packet rewrites, where
switches need to re-write some header fields.

Switch software debuggers. [35], [36] use symbolic execu-
tion to test the software components of SDN switches. They
only carry out static testing for switch software codes, while
cannot detect flow table faults that only show at runtime. How-
ever, we can use them as complementary tools to RuleChecker,
in order to prevent data plane faults.

VII. CONCLUSION

We presented RuleChecker, which can generate probes to
actively test the correctness of SDN flow tables. Different from
previous probe-based testing tools like Monocle, RuleChecker
is extremely fast due to a novel set-based probe generation
method. Moreover, RuleChecker fills some important parts
missed by previous tools, including elimination of false nega-
tives, incremental probe update, and support of cascaded flow
tables. This makes RuleChecker a more complete data plane
testing tool for SDN. Our future work includes extending
RuleChecker to test group tables and backup rules.
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